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Abstract—This paper proposes a machine learning (ML)-
based exponential effective signal-to-noise ratio (SNR) mapping
(EESM) method for simulating the system-level performance of
cellular networks, which utilizes a deep neural network (DNN)
regression algorithm. We first explain overall procedure of the
link-to-system (L2S) mapping algorithm which has been used in
commercial standardization organizations such as IEEE 802.16
and 3GPP LTE. Then, we apply the proposed ML-based EESM
method to the existing L2S mapping procedure. The processing
time of the L2S mapping becomes significantly reduced through
the proposed method while the mean squared errors (MSE)
between the actual block-error rate (BLER) from the link-
level simulator and the estimated BLER from the L2S mapping
technique is also decreased, compared with the conventional L2S
mapping method.

Keywords—Link-to-system mapping, exponential effective SNR
mapping (EESM), physical-layer abstraction, system-level simu-
lation, machine learning (ML), deep neural network (DNN).

I. INTRODUCTION

Future wireless mobile networks will be mainly operated

on a wide bandwidth to provide high data rate service. In a

wide band channel, a transport block (TB) is allocated into

N narrow band channels and each narrow band channel goes

through a different fading condition on its own subcarrier.

Therefore, user equipment (UE) experience different post-

processing signal to interference plus noise ratio (SINR) over

every subcarrier.

In a traditional narrow band channel, block error rate

(BLER) is estimated from a curve of mean SINR and mean

BER. On the contrary, in the wide band channel, different

N post-processing SINRs are mapped to the averaged post-

processing SINR. Since the concept of the averaged post-

processing SNR is defined as an effective SNR, this many-

to-one mapping is called an effective SNR mapping (ESM)

technique. Besides, ESM technique is used for the purpose

of physical layer abstraction when evaluating system-level

simulator (SLS). A simplified link-level simulator (LLS) helps

SLS reduce complexity of computation and it can help improve

simulator performance. Since the concept of physical level

abstraction for SLS is reflected, this is also called link-to-

system (L2S) mapping technique. Accordingly, L2S mapping

is that post-processing SINRs extracted from LLS are mapped

to an effective SNR and BLER is predicted by the effective

SNR.

In the prior studies, many researchers analyzed exponen-

tial effective SINR mapping (EESM) [1], [2] and mutual

information based effective SINR mapping (MIESM) [3] as

representative L2S mapping. In [4], effective SNR is analyzed

on the side of uplink. In [5], impact of L2S is analyzed on

the side of system level. However, there are too many data

extracted from LLS as well as too much processing time is

need to find EESM mapping parameters for various cases.

Moreover, loss incurs due to an inaccuracy from AWGN curve

of SNR and BLER.
Therefore, recent researchers has studied ML-based link

abstraction models. In [6], support vector machine (SVM) is

used to enable ML classification for fast adaptive modulation

coding. This scheme exploits measurement of single TB

success or failure to train the classifier. In [7], a ML method

based on a logistic regression is proposed. To predict a TB

success or failure, their basic model uses mean and standard

deviation of the SINR set, modulation rate, and TB size as

input variables. To improve the estimation accuracy, adding

terms of higher order or combinations of input variables are

used in an enhanced model.
In order to utilize ML-based link abstraction models that

have been studied so far, ML algorithms should be applied on

both of eNB and UE sides. However, since the number of UEs

is too large, it is difficult to embed ML algorithms in all UEs.

Some UEs can directly apply ML algorithms while other UEs

should take the existing EESM method. Therefore, eNBs still

need the existing EESM method. In this paper, we propose

a ML-based EESM method where training data are learned

by deep neural network (DNN) regression and L2S mapping

based on EESM is executed by optimizer algorithms. From

training DNN, we can dramatically reduce processing time and

accurately yield an AWGN curve form DNN regression. From

optimizer algorithms, we can speedily find EESM mapping

parameters compared to existing search algorithms.

II. EFFECTIVE SNR MAPPING PROCEDURE

The overall procedure of the exponential effective SNR
mapping (EESM) is shown in Fig. 1, which basically receives

BLER from the LLS and then passes over two parame-

ters (α1, α2) to the SLS. The details are as follows:

1) First of all, the BLER results according to the chan-

nel type (AWGN, fading channel), the number of used
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Fig. 1. Overall procedure of effective SNR mapping.

subcarriers, and the number of realizations are received

from the LLS. The number of post-processing SNRs is

determined by the number of used subcarriers and the

number of realizations denotes the number of transport

blocks (TBs) under the same channel condition. The

range of SNR values needs to be carefully adjusted at

the LLS so that a similar number of BLER performances

are collected, which covers from 0.01 to 0.9 in general.
If the BLER performances do not appear evenly, then an

exact L2S mapping can not be obtained. As a reference,

the BLER performance according to the SNR values

is needed in the AWGN channel for each modulation

and coding schemes (MCS) with channel quality indi-

cation (CQI).

2) AWGN curve corresponding SNRs and BLERs is gener-

ated from the fitting curve. Since AWGN curve for each

CQI is varied, we find best fitting curve for each CQI.

3) Then, the BLER and post-processing SNRs are jointly

obtained over various fading channels through the LLS.

In particular, N different post-processing SNRs over

subcarriers are denoted by {γ1, γ2, · · · , γN}, where γk

denotes the k-th post-processing SNR. Let e denote the
BLER.

4) When {γ1, γ2, · · · , γN}, α1, and α2 are given, the effec-
tive SNR based on the EESM is given by

γeff (α1, α2) = −α1 ln

(
1

N

N∑
k=1

exp(− γk

α2
)

)
, (1)

where α1 and α2 are determined later. At the

SLS, the BLER with the post-processing SNR values,

{γ1, γ2, · · · , γN}, will be determined by f(γeff(α1;α2)),
where f indicates the BLER in the AWGN channel when
the SNR value is equal to γeff (α1, α2).

5) For a given MCS, the optimal parameters, (α∗
1, α∗

2), are
determined by

(α∗
1, α∗

2) = (2)

argmin
(α1,α2)

{
M∑
i=1

[log10(e
i)− log10 f(γi

eff(α1, α2))]
2

}
,

where M denotes the total number of independent LLS

simulations with different post-processing SNR values and ei

denotes the BLER of the i-th post-processing SNR values. In
addition, γi

eff(α1, α2) is obtained by Eq. (1).

III. MACHINE LEARNING-BASED EESM

Obtaining the optimal parameters with Eq. (2) is burden-

some since the simulation results from the LLS is large

in general. Thus, it is necessary to reduce the computation

complexity as well as to improve the accuracy. In this section,

we first apply the DNN regression method to make the

BLER curve according to SNR in AWGN channel, which is

summarized in Algorithm 1.

Algorithm 1: DNN regression
/* Configure DNN regression */

1 regressor = learn.DNNRegressor(feature columns,

hidden units=[100, 200,100],

optimizer=tf.train.ProximalAdagradOptimizer(

learning rate=0.1, l1 regularization strength=0.001),

activation fn=tf.nn.sigmoid)

/* Train measured data up to 4000
times */

2 input training fn ← (awgn snr, awgn bler)

3 regressor.fit(input fn=input training fn, steps=4000)

/* Predict of BLERs for test SNRs */
4 input reff fn ← snr range

5 predictions = list(regressor.predict scores(input fn =

input reff fn))

6 regressed bler = np.asarray(predictions)

1) We utilize the DNN regression method instead of the

best fitting curve to obtain the BLER curve in AWGN

channels. The DNN consists of several hidden layers

between the input and output layers. Hidden layers of

(100, 200, 100) layers are used in Adagrad optimizer

[8]. Learning rate is set to 0.1 in this paper, which

implies how quickly tune to the target SNR value. The

regularization strength to prevent overfitting is set to

0.001. The sigmoid function 1/(1 + ex) is used as an
activation function in hidden layers.

2) DNN regression continues training for SNRs and BLERs

on AWGN channel with the learning rate at each epoch.

The number of training is 4,000.

3) After training data, BLERs are predicted for test set of

SNRs. Finally, we can get an enhanced AWGN curve of

SNRs and BLERs.

Next, we apply the optimization algorithm to efficiently find

(α∗
1, α∗

2), which is summarized in Algorithm 2.

1) To find the optimal parameters (α∗
1, α∗

2), we load the
simulation results from the LLS in fading channels as

described in Fig. 1.

2) In the ML scheme, the loss function is defined as the dif-

ference between the calculated effective SNR value from

algorithm 2 and AWGN SNR obtained from algorighm 1

at the same BLER. We calculate loss as the expectation

of loss function over BLERs
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Algorithm 2: Find optimal α1 and α2

/* Load data on Fading channel */
1 snr k ← post-processing SNRs, bler ← BLER

/* Calculate γeff with α1 and α2 */
2 snr eff = -1∗alpha1∗tf.log(tf.reduce mean
(tf.exp(-1∗snr k/alpha2), axis=1))
/* Decide target SNR by regression */

3 target snr ← predicted snr corresponding to BLER

/* Calculate loss function */
4 loss = tf.reduce sum(tf.abs(tf.subtract

(target snr,snr eff)))

/* Select training algorithms */
5 train=tf.train.AdagradOptimizer(0.1).minimize(loss)

6 train=tf.train.RMSPropOptimizer(0.1).minimize(loss)

/* Training data 4,000 times */
7 with tf.Session() as sess:

8 sess.run(init)

9 for i in range(4000):

10 sess.run(train)

/* Calculate MSE in test data set */
11 regressed bler ← estimated BLER, y data ← BLER

12 mse =

np.mean(np.square(np.subtract(np.asarray(y data),

np.asarray(regressed bler))))

Fig. 2. BLER according to SNR in AWGN channels when the first CQI of
the 3GPP LTE system is used.

3) We apply optimization algorithms, Adagrad and RM-

SProp, to find the optimal parameters that minimize the

loss function.

4) With the optimal parameters, the mean squared error

(MSE) is calculated by

MSE =
1

M

M∑
i=1

{log10 ei− log10 f(γi
eff(α

∗
1, α∗

2)))}2. (3)

IV. SIMULATION RESULTS

Fig. 2 shows the BLER curve in the AWGN chnnel when

the first CQI of the commercial 3GPP LTE system is used.

Legend ‘AWGN’ (sky blue dot) presents the measured SNRs
and the measured BLERs from the LLS and legend ‘FIT’ (blue

TABLE I
LOSS FUNCTION COMPARISON

CQI FIT DNN CQI FIT DNN

CQI1 0.033 0.018 CQI9 0.019 0.011
CQI2 0.027 0.014 CQI10 0.021 0.008
CQI3 0.033 0.016 CQI11 0.011 0.013
CQI4 0.038 0.013 CQI12 0.025 0.013
CQI5 0.032 0.014 CQI13 0.013 0.010
CQI6 0.017 0.011 CQI14 0.015 0.013
CQI7 0.020 0.015 CQI15 0.030 0.010
CQI8 0.012 0.016 - - -

Fig. 3. Effective SNR mapping results of the proposed ML-based EESM
method in case of CQI={1, 5, 10, 15}.

line) presents the BLER curve in the AWGN chnnel, which

is obtained by the best fitting in Section 2. Legend ‘DNN’
(red line) presents the BLER curve by the DNN regression

via Algorithm 1 in Section 3. We can show that ‘DNN’ yields
a more accurate curve compared to ‘FIT’. Table I shows the
results of the loss function of ‘DNN’ and ‘FIT’ for various
CQIs of 3GPP LTE systems.

Table 2 shows the optimal EESM parameters (α∗
1, α∗

2) for
various CQIs of 3GPP LTE systems by AdaGrad optimizer

and RMSProp optimizer. The MSE performance of RMSProp

is better than that of AdaGrad. Fig. 3 shows the effective SNR

TABLE II
OPTIMAL PARAMETERS (α∗

1, α
∗
2)

CQI
AdaGrad RMSProp

α1 α2 MSE α1 α2 MSE

1 2.78 1.64 0.076 3.80 2.25 0.075
2 3.44 3.26 0.078 2.19 2.08 0.078
3 3.47 3.23 0.026 3.95 3.68 0.026
4 3.14 2.95 0.060 3.12 2.93 0.060
5 3.64 3.32 0.016 2.24 2.05 0.018
6 4.09 2.43 0.044 2.67 1.58 0.038
7 1.89 1.72 0.018 3.11 2.83 0.027
8 3.78 3.50 0.013 3.35 3.10 0.012
9 2.35 2.19 0.131 4.21 3.94 0.098
10 3.08 1.80 0.092 6.77 4.00 0.037
11 2.69 1.57 0.077 6.62 3.90 0.030
12 3.34 1.94 0.158 9.99 5.89 0.067
13 3.67 2.13 0.153 13.92 8.19 0.070
14 3.89 2.24 0.308 15.17 8.92 0.099
15 4.70 2.68 0.312 12.51 7.31 0.172
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mapping results of the proposed ML-based EESM method in

case of CQI={1, 5, 10, 15}, where the RMSProp optimizer
algorithm is used. With this figure, we obverse that the

proposed method predicts the BLER quite well.

V. CONCLUSIONS

In this paper, we proposed a ML-based effective SNR

mapping method to reduce the computational complexity and

improve the accuracy of BLER prediction for system-level

simulation of cellular networks. As a further study, we will

apply the proposed method for link-to-system mapping of 5G

wireless networks.
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